Neuronal galvanotropism is independent of external Ca(2+) entry or internal Ca(2+) gradients.

نویسندگان

  • A M Palmer
  • M A Messerli
  • K R Robinson
چکیده

The mechanism by which growing neurites sense and respond to small applied electrical fields is not known, but there is some evidence that the entry of Ca(2+) from the external medium, with the subsequent formation of intracellular Ca(2+) gradients, is important in this process. We have employed two approaches to test this idea. Xenopus spinal neurites were exposed to electrical fields in a culture medium in which Ca(2+) was chelated to very low levels compared to the normal extracellular concentration of 2 mM. In other experiments, loading the neurites with the calcium buffer, 1, 2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), disrupted the putative internal Ca(2+) gradients, and the effects on the electrical response were determined. Fields of 100 mV/mm were applied for 12 h, and no difference was detected in the cathodal turning response between the treated neurites and the untreated controls. Using the Differential Growth Index (DGI), an asymmetry index, to quantitate the turning response, we recorded DGIs of -0.64, -0.65, and -0.62 for control cells, cells in Ca(2+)-free medium, and cells preloaded with BAPTA, respectively. Furthermore, we detected an increase in neurite length for those neurons cultured in Ca(2+)-free medium; they were 1.5-1.7 times as long as neurites from neurons cultured in normal Ca(2+) medium. Likewise, we found that BAPTA-loaded neurites were longer than control neurites. Our data indicate that neuronal galvanotropism is independent of the entry of external Ca(2+) or of internal Ca(2+) gradients. Both cell-permeant agonistic and antagonistic analogs of cyclic 3',5'-adenosine monophosphate (cAMP) increased the response to applied electrical fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyphal Orientation of Candida albicans Is Regulated by a Calcium-Dependent Mechanism

Eukaryotic cells from fungal hyphae to neurites that grow by polarized extension must coordinate cell growth and cell orientation to enable them to exhibit growth tropisms and to respond to relevant environmental cues. Such cells generally maintain a tip-high Ca(2+) cytoplasmic gradient, which is correlated with their ability to exhibit polarized tip growth and to respond to growth-directing ex...

متن کامل

An apoplastic Ca2+ sensor regulates internal Ca2+ release in aequorin-transformed tobacco cells.

Removal of Ca(2+) from tobacco suspension cell medium has two immediate effects on cytosolic Ca(2+) fluxes: (i) externally derived Ca(2+) influx (occurring in response to cold shock or hypo-osmotic shock) is inhibited, and (ii) organellar Ca(2+) release (induced by a fungally derived defense elicitor, caffeine, or hypo-osmotic shock) is elevated. We show here that the enhanced release of intern...

متن کامل

Initiation Site of Ca2+ Entry Evoked by Endoplasmic Reticulum Ca2+ Depletion in Mouse Parotid and Pancreatic Acinar Cells

PURPOSE In non-excitable cells, which include parotid and pancreatic acinar cells, Ca(2+) entry is triggered via a mechanism known as capacitative Ca(2+) entry, or store-operated Ca(2+) entry. This process is initiated by the perception of the filling state of endoplasmic reticulum (ER) and the depletion of internal Ca(2+) stores, which acts as an important factor triggering Ca(2+) entry. Howev...

متن کامل

Activation of a calcium entry pathway by sodium pyrithione in the bag cell neurons of Aplysia.

The ability of sodium pyrithione (NaP), an agent that produces delayed neuropathy in some species, to alter neuronal physiology was accessed using ratiometric imaging of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in fura PE-filled cultured Aplysia bag cell neurons. Bath-application of NaP evoked a [Ca(2+)](i) elevation in both somata and neurites with an EC(50) of approximately 300 nM an...

متن کامل

Coactivation of capacitative calcium entry and L-type calcium channels in guinea pig gallbladder.

We have evaluated the presence of capacitative Ca(2+) entry (CCE) in guinea pig gallbladder smooth muscle (GBSM), including a possible relation with activation of L-type Ca(2+) channels. Changes in cytosolic Ca(2+) concentration induced by Ca(2+) entry were assessed by digital microfluorometry in isolated, fura 2-loaded GBSM cells. Application of thapsigargin, a specific inhibitor of the Ca(2+)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurobiology

دوره 45 1  شماره 

صفحات  -

تاریخ انتشار 2000